

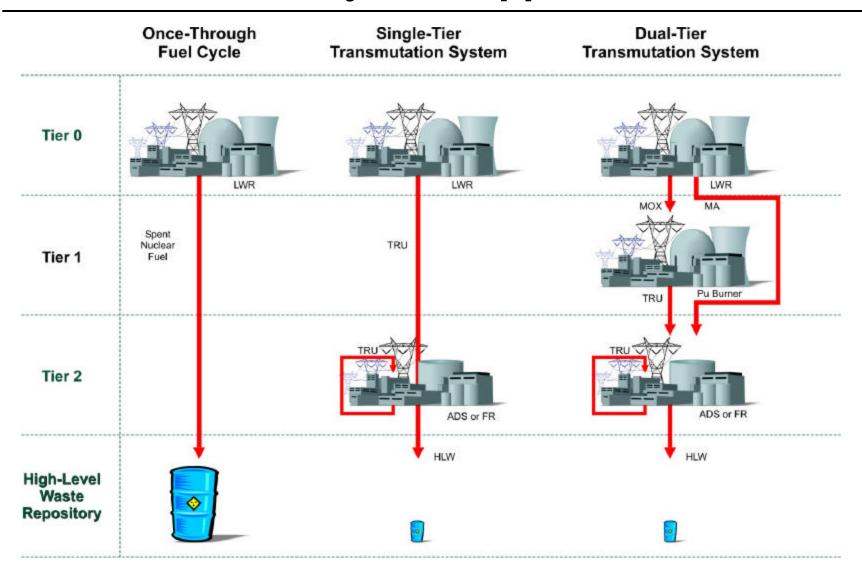
Transmutation Options

Advanced Fuel Cycle Initiative Semi-Annual Review Meeting August 28, 2003

Robert N. Hill Nuclear Engineering Division

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago


Transmutation Options Objectives

- Systematic assessment of transmutation system technology and implementation options
 - Diverse body of existing international work on transmutation
 - Most research focused on details of specific options
 - Identify promising options and technology gaps
- Synthesis of previous transmutation activities
 - Overview provides added insights
 - International work may have impact on AFCI approach (e.g., maturity of LWR nonfertile fuel research)
- Respond to inquiries regarding transmutation strategy
 - Integrate work to respond to NERAC and external questions
 - Address key systems planning/direction issues

Transmutation System Approach

Recent Highlights of Transmutation Options Studies

Assess characteristics of interim waste forms

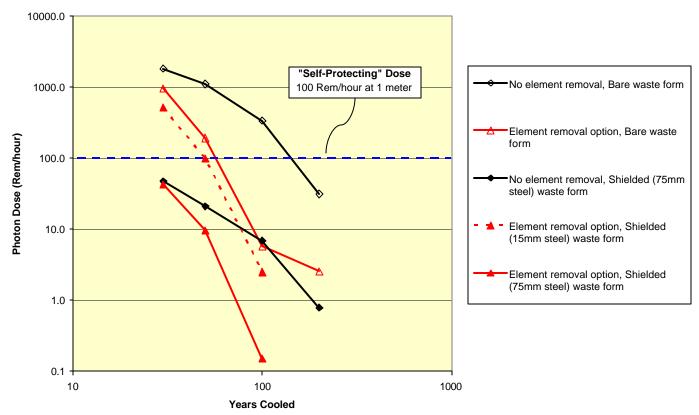
- Impact of partial separations with and without transmutation
- Evaluation requested by ANTT Subcommittee

Systematic evaluation of PWR transmutation strategies

- Review of extensive international studies
- Comparison of multi-recycle options
- Homogeneous and heterogeneous (target) schemes compared

Systematic evaluation of FR transmutation strategies

- Compare transmutation potential of Gen-IV fast spectrum concepts
- Development and safety evaluation of low conversion ratio FR


Interim Storage Evaluation

- LWR spent fuel is processed to remove key elements
 - Uranium removed for mass reduction
 - Cesium and strontium removed to simplify handling
 - Transuranics (TRU) and other fission products remain
- Characteristics of interim storage form analyzed
 - Benefit of direct disposal to repository would be limited
 - Long-term heat load is retained
 - Self-generated radiation dose was estimated
 - For 21 PWR assemblies (single YM waste package)
 - Storage form is self-protecting for ~50 years (next viewgraph)
 - In a similar manner, criticality and thermal management issues were considered
 - Waste can be safely handled and pacakaged

Dose Evaluation of Interim Storage Package

- Photon dose is greater than 100 rem/hr for ~50 years
 - Key contributor is Eu-154 with 8.6 yr half-life and high energy
 - Impact of thin steel wall on dose rate is minor
 - Neutron dose is much smaller (order of 1 rem/hr)

Transmutation by Recycle in PWRs: Collaborative Assessment with CEA

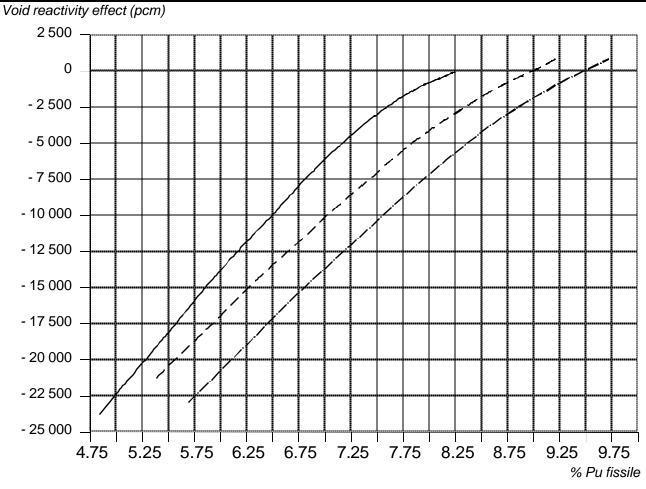
First, the physics of LWR multi-recycle was assessed

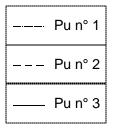
- Transmutation character varies with the moderator-to-fuel ratio
 - Capture/fission ratio higher at thermal energies
- Impact of extended burnup was considered (next viewgraph)
 - Plutonium quantity per unit energy decreases
 - Plutonium quality degrades with burnup
 - More higher actinides are generated at higher burnup
- Utilization of MOX fuel exacerbates both plutonium vector degradation and higher actinide generation
- Impact of repeated recycle evaluated for range of moderator-tofuel ratios
 - Hard spectrum and degraded vector increase enrichment
 - Can have adverse affect on reactivity coefficients
 - Positive void effect may limit the allowable MOX enrichment

Plutonium and Minor Actinide Production

BURN-UP (GWd/t)	Initial Enrichment	TOTAL Pu	Np 237	Am 241	Am 243	Cm 244	Cm 245
		kg/MTIHM				•	
42	3.70 %	11.7	0.62	0.20	0.17	0.05	0.00
55	4.50 %	12.6	0.76	0.21	0.25	0.10	0.02
65	4.95 %	13.3	1.01	0.25	0.38	0.18	0.02
		kg/TWeh					
42	3.70 %	34	1.81	0.58	0.49	0.14	0.01
55	4.50 %	28	1.70	0.47	0.56	0.22	0.02
65	4.95 %	25	1.90	0.48	0.71	0.34	0.03
65	6 % - MOX	-70	0.5	8.6	5.7	3.3	0.7

- Plutonium quantity for given HM loading increases with burnup
- Per unit energy, plutonium quantity decreases
 - Thus, for given power production, less plutonium generated
- However, more minor actinides generated at higher burnup
- MOX loading results in net destruction of plutonium
 - But, minor actinide production rate is greatly increased

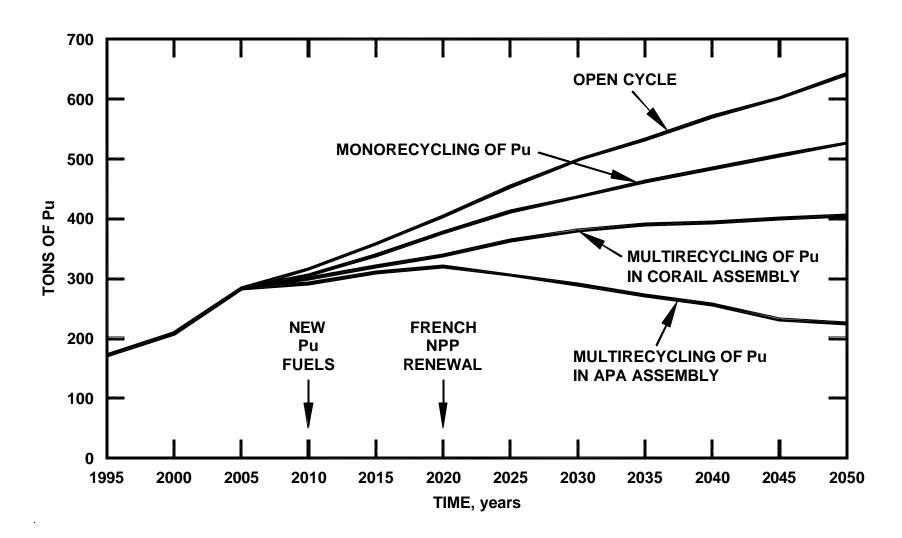

Degradation of Plutonium Vector with Recycle


Reycle #	1	2	3	4	5	6
238 _{Pu}	0.11	1.17	1.85	2.55	2.74	5.63
239 _{Pu}	79.9	67.9	58.1	54.3	42.5	33.9
240 _{Pu}	17.3	18.6	22.6	23.2	29.2	29.1
241 _{Pu}	1.45	9.11	10.8	11.7	14.3	13.7
242 _{Pu}	0.50	2.69	5.60	7.14	9.82	16.2
241 _{Am}	0.57	0.55	1.20	1.18	1.44	1.39
Fissile %	81.4	77.0	68.8	66.0	56.8	47.7
MOX Enrichment Requirements						
Self MOX Recycle	6.0	7.6	8.6			
Recycle w/dilution	6.0	6.6	7.0			

- Plutonium vector degrades each recycle
 - Fissile fraction decreases, requiring higher MOX enrichment
- Enrichment increases from 6% (first MOX recycle) to 8.6% (after two MOX recycles)
 - Can limit to 7% by dilution with plutonium from UOX assemblies

Impact of MOX Enrichment on Void Effect

- Degraded vector also hardens the LWR spectrum
- Zero void enrichment limit decreases from 9.5 to 8.25%


10

Multi-Recycle Strategies for PWRs

- Enriched uranium support (i.e., only partial loading of Pu-based fuel) mitigates penalties and allows plutonium multi-recycle
- Practical implementation of plutonium and/or minor actinide (MA) recycling has been explored
 - Pu+MA mixed with enriched uranium (MIX concept)
 - Separate MOX and enriched uranium pins (CORAIL concept)
 - Pu+MA loaded in nonfertile fuel
 - Can achieve greater net destruction rate
- Selective recycle of TRU elements considered
 - Curium removal prevents higher actinide build-up
 - However, difficult to separate and store curium
- Limited recycle of TRU may be preferred
 - With remaining materials consumed in a complementary transmuter

Pu Management Options (French Case)

Thermal Reactor Strategies

Several other items regarding transmutation in LWR systems need to be addressed:

- Assessment of BWR transmutation studies
- Review of transmutation studies for reduced moderation water reactor (RMWR) - ongoing
- Potential for transmutation in VHTR is a key issue for congruence with Generation-IV program
- Deep burnup options in thermal (gas or LWR) systems may reduce the reprocessing requirements
 - Fuel forms to tolerate burnup must be developed
 - Larger reactivity variations must be managed
 - Burnable poisons
 - Refined loading strategies

Low Conversion Ratio Fast Reactor

- Ratio of transuranic (TRU) production to destruction ratio is defined as the conversion ratio (CR)
- Results of previous fast burner reactor studies
 - If limited to conventional fuel enrichment, the minimum conversion ratio that can be achieved is ~0.5
 - At non-uranium limit, adverse impacts were observed
 - High reactivity loss rates
 - No Doppler coefficient
- Low conversion ratio fast reactor design study was conducted in FY02 to explore range of CR from 0.5 to 0.0
 - Favorable passive safety behavior retained at low CR
- This year, low conversion ratio system point design specified
 - CR~0.25 chosen for 50% fuel enrichment
 - Compact configuration developed
 - Detailed safety assessment is being conducted

Transmutation Performance of Fast Transmuter Options

System	Conventional Burner	Low CR Burner	ADS
TRU Conversion Ratio	0.55	0.25	0.00
Net TRU consumption rate (kg/yr)	108	193	270
Transmuter Diameter (cm)	338	186	208
Transmuter Height (cm)	46	113	113
Fuel Volume Fraction,	0.38	0.22	0.19
Fuel Enrichment, % TRU/HM	27/33	44/56	100
TRU Inventory, MT of TRU	4.36	2.25	2.66

- TRU consumption rate significantly higher for low conversion ratio systems
 - Non-uranium limit of 270 kg/yr for 840 MWt size system
 - Achieve 75% this rate at CR=0.25
- Enrichment is roughly 50% for low conversion ratio burner
- Compact configuration can be employed with reduced fuel volume fraction
 - Economic benefit for 1.5 meter reduction in system diameter
 - TRU inventory is roughly ½ that of high leakage burner

Safety Parameters of Fast Transmuter Options

System	Conventional Burner	Low CR Burner	ADS
TRU Conversion Ratio	0.55	0.25	0.00
Net TRU consumption rate (kg/yr)	108	193	270
Fuel Enrichment, % TRU/HM	27/33	44/56	100
Burnup Swing (%Dk)	1.35	4.26	4.14
Delayed Neutron Fraction	0.0032	0.0028	0.0023
Sodium Void Worth (\$)	3.36	4.85	-0.7
Radial Expansion Worth (cents/C)	-0.34	-0.35	-0.42
Doppler Worth (cents/C)	-0.066	-0.052	0

- Burnup reactivity loss rate much faster at low conversion ratio
 - Must account for reactivity compensation (e.g., shorter cycles, more CRs)
- Void worth ~\$1.5 higher for compact configuration
 - Expansion coefficients are roughly conserved
- Doppler coefficient decreases with conversion ratio
 - Still significant at 50% enrichment, but zero with nonuranium fuel
- Passive safety performance is being analyzed in detail

Fast Reactor Strategies

Several other items regarding transmutation in fast spectrum systems need to be addressed:

- Comparison of transmutation performance of the fast reactor systems proposed in Generation-IV
 - Collaborative study with CEA initiated to evaluate potential
 - Sodium, gas, and lead-cooled FRs compared
 - Transmuter designs need to be developed in more detail
- For double tier transmutation system, transmuter performance will depend intimately on first tier performance
 - Low fissile content leads to high enrichments
 - Fuel handling may be severely complicated by deep burnup in thermal spectrum system (higher actinide generation)
- Relative performance of reactor and ADS transmuters
 - Preferred system may depend on growth scenario

17